Past Paper Booklet Mathematics

DISCLAIMER

This document consist of scanned copies of the BGCSE and/or BJC past papers produced by the Bahamas Ministry of Education. The Student Shed accepts no responsibility or liability for the contents within this document, including but not limited to; answers that may be highlighted, missing papers or missing questions.

It is the sole responsibility of the user to determine the correct and most suitable answers for each question contained therein.

BGCSE Mathematics Year 2016 Papers 1, 2, & 3

School Number	Candidate Number	
Surname and Initials		

MATHEMATICS

PAPER 1 (CORE/EXTENDED) 3815/1

Tuesday

17 MAY 2016

1:00 P.M.-2:30 P.M.

Additional materials: Calculator (not graphing) Geometrical instruments

MINISTRY OF EDUCATION NATIONAL EXAMINATIONS

BAHAMAS GENERAL CERTIFICATE OF SECONDARY EDUCATION

INSTRUCTIONS TO CANDIDATES

Do not open this booklet until you are told to do so.

Write your school number, candidate number, surname and initials in the spaces provided at the top of this page.

Answer ALL questions in the spaces provided for each question.

ALL working must be shown.

ALL working must be done in blue or black ink, except for drawings, lines and constructions which may be done in pencil.

INFORMATION FOR CANDIDATES

Calculators [NOT GRAPHING CALCULATORS] may be used.

Tracing paper may be used.

Geometrical instruments are required.

The mark for each question, or part question, is shown in brackets [].

The total number of marks for this paper is 100.

INFORMATION AND FORMULAE

a b

Angle sum of quadrilateral $a + b + c + d = 360^{\circ}$

Area of rectangle = base \times height

Area of triangle = $\frac{\text{base} \times \text{height}}{2}$

Volume of cuboid = length \times width \times height

Circumference of circle = $2\pi r$ or πd Area of circle = πr^2

1.	At a weather station, a balloon is released every 6 hours, day and night. Calculate the number of balloons that are released in one week.	
	Answer:	
2.	Given that $x = 7$ and $y = -4$, calculate the value of $x^2 + 3y$.	
	Answer:	[3]
3.	Calculate the remainder when the sum of 486 and 985 is divided by 83.	
	Answer:	
4.	Simplify	
	$19 - 2(3 + 9) \div 4$	
	Answer:	[3]
/		

50617

20.00

5. On the diagram below, draw in **all** the lines of symmetry.

[3]

6.

Coffee Break prepares a blend of coffee containing Arabica beans and Brazil beans in the ratio 4: 3.

(a) Calculate the weight of Arabica beans in a blend of 455 g.

α [2]

Coffee Break has placed an order of 150 kg of Brazil beans.

(b) Calculate the weight of Arabica beans to be ordered to make their blend.

Answer:	kg	[2]
Answer:	Kg	L

9.	Mr. R	Rolle attended a tourist conference session beginning at 8:45 a.m. and ending at 11:	05 a.m.
	(a)	How long was the session?	
		Answer:	_ hrs [2]
	Mr. R	Rolle then had a 55 minute lunch break.	
	(b)	At what time did the lunch break end?	
		Answer:	[2]
10.			
	A pov	wer boat in a <i>Formula 2</i> race has an average speed of 165 km per hour.	
	Calcu	ulate	
	(a)	the distance, in km, that the boat travelled in a race of $1\frac{2}{3}$ hours,	
		Answer:	_ km [2]
	(b)	the time, in minutes, to travel a lap of 5.5 km.	

Answer: _____ mins [3]

11.

Cassandra needs to determine the weight of her two dogs, Mimi and Mitzi. However, neither dog will sit on the scale by herself. Cassandra, Mimi and Mitzi altogether weigh 175 pounds. Cassandra and Mimi together weigh 143 pounds. Cassandra and Mitzi together weigh 139 pounds.

Calcul	ate:		
(a)	the weight of Mitzi,		
		Answer:	lbs [2]
(b)	the weight of Mimi,		
		Answer:	lbs [2]
(c)	the weight of Cassandra.		
		,	
		Answer:	lbs [2]

26121

13.	()	0 1 1 0 11 1
1 1	(a)	Complete the following convergions:
15.	(u)	Complete the following conversions:

(i)	$5400 \text{ ml} = _$	1	[1]
Carlo Carlo			[+]

(ii)
$$0.35 g = ____mg$$
 [1]

(iii)
$$685 \text{ cm} = ____m.$$
 [1]

(b) Java Coffee Shop purchases coffee beans in bags of 13.2 kg. The shop then sells this coffee in packages of 220 g. Calculate the number of packages that can be filled from one bag of coffee beans.

Answer:	[3]
	[2]

14. The diagram shows a sector of a circle with an angle of 90° and radius of 10 cm. A segment of the circle is shaded.

Calculate

(a)	the area of the triangle,
(a)	the area of the triangle

Answer:	cm^2	[2]	
	CIII	-	

(b) the area of the sector of the circle (use $\pi = 3.14$),

(c) the area of the shaded segment.

Answer:	cm ² [2

15. In a survey, people were asked which of three newspapers they read. The incomplete table below shows the results of this survey.

Newspaper	Number of People	Angle
The Daily	60	120°
The Sun	50	
The Press		140°

	200 200
(a)	Calculate
()	CHIPCHIC

(i) the angle representing *The Sun*,

Answer:	0	[2]	i
Allswel.	_	[4]	ı

(ii) the number of people who read *The Press*.

Answer:	[3]

(b) With a protractor and ruler, use the information from (a) to complete the pie chart below.

16.				arcine.)
	$8\frac{1}{2}$	$10\frac{1}{2}$	9	101/2	7	6	10	10½	
	The Sh	toe Store for	men sold	8 pairs of	shoes. The s	hoe sizes sold	were:		
			81/2,	10½, 9,	10½, 7, 6	, 10, 10½			
	(a)	Calculate							
		(i) the	e mean of	f the shoe s	sizes,				
				Ansv	wer:				[2]
		(ii) the	median	shoe size.					
				Ansu	ver:				F23
	(b)	Write down	the mode						[3]
	(0)	write down	the moda						
				Answ	ver:				[1]
	(c)	Write down	the meas	urement th	at is most us	eful to the sto	re manager.		
				Answ	/er:				[1]

17.	Simplify					
	(a)	$\frac{1}{2}(3-2x)$				
		Answer: [2]				
	(b)	19s - 6t - s + 5t				
		Answer: [2]				
	(c)	$5w \times w^3 \times 3$				
		Answer: [2]				
	(d)	$24p^7 \div 3p^2$				
		Answer: [2]				
18.	(a)	Restaurants add a gratuity of 15% to the diner's bill. Calculate the gratuity for a bill of \$67.50, giving your answer to the nearest cent.				
		Answer: \$ [3]				
	(b)	The regular price of a purse is \$159. The sale price is \$106. Calculate the percentage saving.				
		Answer:				
	(c)	A savings account earns interest of 2.5% per year. Calculate the interest earned on \$840 in 6 months.				
		Answer: \$ [3]				

19.	Linda is and a ha	paid \$12.40 per hour for the first 36 hours of a regular work week. Overtime is paid at time lf. This week she worked 42 hours.			
	(a)	Calcula	te her earnings for		
		(i)	the regular 36 hours worked,		
		(ii)	Answer: \$ [1] one hour overtime,	l	
		(iii)	Answer: \$ [2] her total earnings for this week.	l	
			Answer: \$ [3]]	
	Last week Linda's total earnings were \$465. The employee National Insurance contribution was 3.4% of the total earnings.				
	(b)	Calculate			
		(i)	her National Insurance contribution for last week,		
		(ii)	Answer: \$ [2] her net earnings.		
			Answer: \$ [1]	-	

50612

S-31 -51

3815/2 BGCSE

MATHEMATICS

PAPER 2 (CORE/EXTENDED) 3815/2

Wednesday 18 MAY 2016 9:00 A.M.-11:00 A.M. Additional materials:
Calculator (not graphing)
Geometrical instruments
Answer booklet
Graph paper

MINISTRY OF EDUCATION NATIONAL EXAMINATIONS

BAHAMAS GENERAL CERTIFICATE OF SECONDARY EDUCATION

INSTRUCTIONS TO CANDIDATES

Do not open this booklet until you are told to do so.

Write your school number, candidate number, surname and initials in the spaces provided on each answer booklet.

Answer **ALL** questions in the answer booklet.

ALL working must be shown.

ALL working must be done in blue or black ink, except for drawings, lines and constructions which may be done in pencil.

INFORMATION FOR CANDIDATES

Calculators may be used. [NO GRAPHING CALCULATORS ALLOWED].

Tracing paper may be used.

The mark for each question, or part question, is shown in brackets [].

The total number of marks for this paper is 100.

INFORMATION AND FORMULAE

MENSURATION

Parallelogram

Triangle

Trapezium

$$Area = bh$$

Area =
$$\frac{1}{2}bh$$

Area =
$$\frac{1}{2}(a+b)h$$

Circle (radius *r*, diameter *d*)

Circumference = $2\pi r$ or πd

Area

 $=\pi r^2$

Cylinder (radius *r*, height *h*)

Volume

 $= \pi r^2 h$

Prism

e.g. triangular prism

Volume = area of cross-section \times length

TRIGONOMETRY

Right-angled triangle

$$r^2 = x^2 + y^2$$
, (result of Pythagoras)

$$\sin A = \frac{\text{opposite}}{\text{hypotenuse}}, \cos A = \frac{\text{adjacent}}{\text{hypotenuse}}, \tan A = \frac{\text{opposite}}{\text{adjacent}}$$

NUMBER

Standard form is $a \times 10^n$ where $1 \le a < 10$ and n is an integer.

1.	1. Express this ratio in its simplest form.							
@ <u>E</u>			96 cm : 2.4 m	[2]				
2.		Light travels at 1.86×10^5 miles per second. Calculate how far it travels in a minute, giving your answer in scientific notation (standard form). [2]						
3.	Solve	$\frac{x}{3} - \frac{7}{12} =$	$=\frac{x}{4}$	[4]				
4.	(a)	Solve	the inequality $9 + 11x < 42$	[2]				
	(b)	Write	down the solution set of natural numbers that satisfy the inequality in (a).	[2]				
5.	Evalu	ate						
		(a)	5^3	[1]				
		(b)	9°	[1]				
		(c)	$(2^3)^2$	[1]				
		(d)	4^{-2}	[1]				
6.	as mu	ch mone	He went to a Computer Store, a Book Store and a Music Store. He spent three y in the Computer Store as he did at the Music Store. He spent \$12 less at the Music Store. He then had \$37 left.					
	(a)	Using	x to represent the amount he spent at the Music Store, express in terms of x ,					
		(i)	the amount spent at the Computer Store,	[1]				
		(ii)	the amount spent at the Book Store.	[1]				
	(b)	Form	an equation in terms of x for the total amount of money spent.	[1]				
	(c)	Solve Store.	the equation formed in (b) to determine the amount of money spent at the l	Music [2]				

MINISTRY OF EDUCATION BAHAMAS GENERAL CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

School No.	Candidate No.		Level:	For Examiner's
Subject Number & Title:			Paper:	Use
Surname & Initials:			Section:	
Signature:		Date:	Qu. No.	

	 			
	 			
	第三位 医肾 医肾上腺 医多甲基二醇 经利			
	 			
				
				
	 			
				
				
				
				
		하드를 즐겁는 때로 해가 다 하는 것도록		
 				
			 	
			+++++++++++++++++++++++++++++++++++++++	
			+++++++++++++++++++++++++++++++++++++++	
		1 	 	
		+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	
	 	+++++++++++++++++++++++++++++++++++++++		
				

7. Solve the following pair of simultaneous equations

$$y = \frac{3}{2}x$$

$$3x + 2y + 4 = 0$$
[5]

- 8. (a) Using a ruler, compass and pencil only, construct and label $\triangle ABC$ such that AB = 11.2 cm, AC = 9 cm and $\angle CAB = 60^{\circ}$. [5]
 - (b) Measure and write down the size of $\angle ABC$. [1]
- 9. (a) AB is a diameter of the circle ABC with centre O. AD is a tangent to the circle at A. $\angle ADC = 56^{\circ}$. [1]

Calculate (i) $\angle BCA$, [1]

(ii) $\angle ABD$, [1]

(iii) $\angle CAD$. [1]

[1]

(b) Each interior angle of a regular polygon is 165°.

Calculate

(i) the size of each exterior angle,

(ii) the number of sides of the polygon. [2]

- 10. Use the formula $Q = 3t^2 5th$ to
 - (a) calculate the value of

(i)
$$Q \text{ when } t = 7 \text{ and } h = 6,$$
 [2]

(ii)
$$h$$
 when $Q = 332$ and $t = 16$, [3]

- (b) make h the subject of the formula. [2]
- 11. The diagram represents a triangular prism of length 19 cm. The triangular cross-section has sides of length 10 cm, 11.3 cm and 14 cm, and a height of 8 cm.

Calculate

(a)	the area of the cross-section,	[2]

(b) the volume of the prism, [2]

(c) the total surface area of the prism. [3]

12.	$\mathbf{\varepsilon} = \{\mathbf{j} \\ L = \{\mathbf{j} \\ M = \{\mathbf{j} \\ N = \{\mathbf{j} \\ N$	n 30}	
	(a)	List the elements of	
		(i) <i>L</i> ,	[1]
		(ii) <i>M</i> ,	[1]
		(iii) N,	[1]
		(iv) $L \cap N$,	[1]
		(v) $M' \cap N$.	[2]
	(b)	Determine $n(L \cup N)$.	[1]
	(c)	Describe the set $L \cap M$ in a and N .	similar manner as the descriptions given for the sets L, M [1]
13.	(a)	Factorise completely	
		$12pq^2 + 3p - 6p^2q$	[3]
	(b)	Simplify	
		(i) $\left(\frac{5m}{n^3}\right)^2$	[3]
		(ii) $13 - 3(t+5) + 4t$	[3]

14. The diagram shows transmission tower TB of height 25.2 m topped with an antenna AT. The point C is 18.9 m from B and the angle of elevation at C to the top of the antenna is 56°.

Calculate, giving your answer correct to one decimal place,

(a) the length of TC, [3]

(b) the angle, BTC, [3]

(c) the height of the antenna, AT. [4]

15. ANSWER THIS ENTIRE QUESTION ON THE GRAPH PAPER PROVIDED.

(a) Copy and complete the following table for the graph of $y = \frac{2x-1}{3}$.

x	-7	-2.5	-1	2	8
ν	-5		-1	1	

[2]

- (b) Using a scale of 1 cm to 1 unit for each axis, and values $-8 \le x \le 10$ and $-8 \le y \le 10$, draw the graph of the line $y = \frac{2x-1}{3}$. [3]
- (c) Calculate the gradient (slope) of your graph in (b). [2]
- (d) Another graph has the equation y = 3. Draw this graph on the same coordinate plane. [1]
- (e) Write down the gradient (slope) of the graph in (d). [1]
- (f) Write down the coordinates of the point where the graphs intersect. [1]

16. ANSWER THIS ENTIRE QUESTION ON THE GRAPH PAPER PROVIDED.

- Using a scale of 1 cm to represent 1 unit on each axis, taking values of x from $-8 \le x \le 10$ and values of y from $-8 \le x \le 10$, copy and draw the above quadrilateral A. [3]
- (b) Draw the image of quadrilateral A after a rotation of 180° about the origin. Label it B. [2]
- (c) Translate quadrilateral A by $\left(\frac{1}{-5}\right)$. Label the image C. [2]
- (d) Reflect quadrilateral A in the line x = -1. Label the image **D**. [2]
- (e) Enlarge quadrilateral A by a scale factor of 2 through the origin. Label the image E. [2]

MATHEMATICS

PAPER 3 (CORE/EXTENDED) 3815/3

Monday 23 MAY 2016 9:00A.M.-11:30A.M. Additional materials: Calculator (not graphing)

Geometrical instruments Answer booklet

Graph paper

MINISTRY OF EDUCATION NATIONAL EXAMINATIONS

BAHAMAS GENERAL CERTIFICATE OF SECONDARY EDUCATION

INSTRUCTIONS TO CANDIDATES

Do not open this booklet until you are told to do so.

Write your school number, candidate number, surname and initials in the spaces provided on each answer booklet.

Answer ALL questions in the answer booklet.

ALL working must be shown.

ALL working must be done in blue or black ink, except for drawings, lines and constructions which may be done in pencil.

INFORMATION FOR CANDIDATES

Calculators may be used. [NO GRAPHING CALCULATORS ALLOWED].

Tracing paper may be used.

The mark for each question, or part question, is shown in brackets [].

The total number of marks for this paper is 100.

MINISTRY OF EDUCATION BAHAMAS GENERAL CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

School No.	Candidate No.		Level:	For Examiner's	
Subject Number & Title:			Paper:	Use	
Surname & Initials:			Section:		
Signature:	nature: Date:		Qu. No.		

EXAMINATION

School No.	Candidate No.		Level:	For Examiner's	
Subject Number & Title:			Paper:	Use	
Surname & Initials:			Section:		
Signature: Dat			Qu. No.		

			
			
			
			
} 	 	 	
			
			
			
			
	 		
	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	
	 	 	
		+++++++++++++++++++++++++++++++++++++++	
		 	1
 			
			
 			
		+ 	
			
			
			
			
		+++4+++++++++++++++++++++++++++++++++++	
			
	+++++++++++++++++++++++++++++++++++++++	 	
	 		1
		 	
	+++++++++++++++++++++++++++++++++++++++		4
	+++++++++++++++++++++++++++++++++++++++		1 1
<u> </u>			
			
			
	+++++++++++++++++++++++++++++++++++++++		
	 	 	111111111111
			

INFORMATION AND FORMULAE

MENSURATION

Parallelogram

Area = bh

Circle (radius r, diameter d)

Cylinder (radius r, height h)

Sphere (radius r)

Prism

Pyramid

Cone (radius *r*, height *h*)

Area = $\frac{1}{2}bh$

Circumference Area

Volume Area of curved surface

Volume Area of surface

Volume Volume

Volume

Area of curved surface

Area = $\frac{1}{2}(a+b)h$

 $=2\pi r \text{ or } \pi d$ $=\pi r^2$

 $=\pi r^2 h$ $=2\pi rh$

 $=\frac{4}{3}\pi r^{3}$ $=4\pi r^{2}$

= area of cross-section × length

 $=\frac{1}{3}\times$ area of base \times height

 $=\frac{1}{3}\pi r^2 h$ $= \pi rs$

where $s = \text{slant height } \sqrt{h^2 + r^2}$

TRIGONOMETRY Right-angled triangle

$$r^2 = x^2 + y^2$$
 (result of Pythagoras)

opposite

 $\sin A = \frac{\text{opposite}}{\text{hypotenuse}}$, $\cos A = \frac{\text{adjacent}}{\text{hypotenuse}}$, $\tan A = \frac{\text{opposite}}{\text{adjacent}}$

Any triangle

In any triangle ABC:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

Area of triangle $ABC = \frac{1}{2} ab \sin C$

NUMBER **ALGEBRA** Standard form is $a \times 10^n$ where $1 \le a < 10$ and n is an integer. The quadratic equation $ax^2 + bx + c = 0$ has solutions

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ The determinant of matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is ad - bc.

The inverse of $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is $\frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

If
$$y = ax^n$$
, then $\frac{dy}{dx} = anx^{n-1}$

1. In the diagram, the line DE is tangent to the circle ABC at the point B.

AC = BC and $\angle ABD = 62^{\circ}$.

Calculate the value of

(a)
$$\angle ACB$$
, [1]

(b)
$$\angle BAC$$
, [1]

(c)
$$\angle CBE$$
. [1]

- 2. In the formula $\frac{k}{x^3}$, k is a constant. If y = 4 when x = 6, calculate
 - (a) the value of k, [2]
 - (b) the value of y when x = 4. [2]
- 3. (a) Simplify $(16b^8)^{\frac{3}{4}}$ [2]
 - (b) Solve for $x 9^{2x} = 27$ [3]

4.

The estimated number of tourist arrivals for this year is 5.355 million. This is an increase of 5%

from last year. [2] (a) Calculate the number of tourist arrivals for last year. The projected number of tourist arrivals for next year is 5.5692 million. [3] (b) Calculate the projected percentage increase for tourist arrivals. 5. (a) For the following matrix equation, solve for k, m and n. $\begin{pmatrix} m & 0 \\ 1 & 4 \end{pmatrix} + k \begin{pmatrix} 0 & 3 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 12 \\ n & 8 \end{pmatrix}$ [3] Given that the matrix $\begin{pmatrix} x & 1 \\ 2 & 3 \end{pmatrix}$ does not have an inverse, calculate the value of x. (b) [3] *OA* and *OB* are position vectors relative to the origin *O*. Given the points A(7,-15) and B(-2,3), 6. write down the column vectors \overline{OA} and \overline{OB} , (a) [2] express \overline{AB} as a column vector, [2] (b) calculate $|\overline{AB}|$, the magnitude of \overline{AB} . [2] (c) Given that h(t) = 7 - 5t and $k(t) = \frac{4+t}{3}$, calculate 7. [1] (a) the value of h(3), t where k(t) = 9, [2] (b) a simplified expression for kh(t), (c) [2] $k^{-1}(t)$. (d) [2] 8. (a) Express as a fraction in simplest form.

$$\frac{3}{x-1} - \frac{2}{3-x}$$

[4]

(b) Solve for x.

$$\frac{1}{x} - \frac{1}{2x} + \frac{1}{3x} = 1\frac{2}{3}$$

[4]

9.

For the quadrilateral ABCD, AB = 51 cm, AD = 102 cm and AC = 93 cm. $\angle ABC = 114^{\circ}$ and $\angle CAD = 36^{\circ}$.

Calculate, giving your answer to the nearest whole number,

(a) the length of CD,

[4]

(b) the angle $\angle ACB$.

[4]

10. In a club with 30 members, 18 are girls, 6 are left-handed and 3 are left-handed boys. The table is to show the number of members in each category.

	Left-handed	Right-handed
Girls		15
Boys	3	

(a)	Copy ar	nd complete the table.	[2]		
(b)	A member is chosen at random. Use your table to calculate the probability that t member is				
	(i)	left-handed,	[1]		
	(ii)	a boy,	[1]		
	(iii)	a girl and right-handed.	[1]		
(c)	The pre boy.	sident of the club is right-handed. Calculate the probability that the president	is a [2]		
(d)		embers are chosen, one after the other, to represent the club. te the probability that they are			
	(i)	both right-handed,	[2]		
	(ii)	a boy and a girl, in any order.	[3]		

11. ANSWER THIS ENTIRE QUESTION ON THE GRAPH PAPER PROVIDED.

The following is an incomplete table of values for the graph of $y = 3 + \frac{2}{x}$.

x	0.4	0.5	1		2	3	4	5	6
у	8	7	5	4.5	4	3.7		3.4	3.3

(a) Calculate

(i) the missing y value,

[1]

(ii) the missing x value.

[3]

Using a scale of 2 cm to 1 unit on each axis for $0 \le x \le 7$ and $0 \le y \le 9$, draw the graph of $y = 3 + \frac{2}{x}$.

(c) Using the same scale and axes, draw the graph of y = 7 - x.

[2]

[4]

(d) From your graph, estimate the values of x where the curve and line intersect.

[2]

12. A manufacturing company ships material in quantities of 8000 cm³ by volume. The material is shipped in cubic packaging as shown.

- (a) For this cube, calculate
 - (i) the length of a side,
 - (ii) the surface area. [2]

[2]

In the interests of economy, it was found that it would be cheaper to use cylindrical packaging as shown.

- (b) For this cylinder, calculate, using $\pi = 3.14$ where necessary,
 - (i) the radius (to 1 decimal place), [3]
 - (ii) the surface area. [4]
- (c) Calculate the amount of packaging saved by using the cylindrical form. [1]

- 13. The general expression for a trinomial is $ax^2 + bx + c$.
 - (a) Substitute each set of values into the expression, and factorise.

(i)
$$a = 1, b = -5, c = 0$$
 [2]

(ii)
$$a = 1, b = 7, c = 10$$
 [2]

(iii)
$$a = 2, b = 5, c = -3$$
 [2]

- When a = 1 and c = -9, determine the value of b so that the product of the factors of the expression is the difference of squares. Show your working. [3]
- (c) When a = 1 and b = 8, determine the value of c so that the expression factorises into a perfect square. Show your working. [3]